Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI

نویسندگان

  • Cheng Wang
  • Jian Zeng
  • Yin Li
  • Wei Hu
  • Ling Chen
  • Yingjie Miao
  • Pengyi Deng
  • Cuihong Yuan
  • Cheng Ma
  • Xi Chen
  • Mingli Zang
  • Qiong Wang
  • Kexiu Li
  • Junli Chang
  • Yuesheng Wang
  • Guangxiao Yang
  • Guangyuan He
چکیده

Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway

BACKGROUND Since the creation of "Golden Rice", biofortification of plant-derived foods is a promising strategy for the alleviation of nutritional deficiencies. Potato is the most important staple food for mankind after the cereals rice, wheat and maize, and is extremely poor in provitamin A carotenoids. METHODOLOGY We transformed potato with a mini-pathway of bacterial origin, driving the sy...

متن کامل

The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides.

Coloured carotenoids play some undefined role in the assembly of a functional light-harvesting 2 (LH2) complex in photosynthetic bacteria. We have used a series of transposon Tn5 insertion mutants disrupted at various stages of the carotenoid-biosynthetic pathway, together with an LH2 deletion/insertion mutant, to investigate this effect in Rhodobacter sphaeroides. Mutants were initially charac...

متن کامل

Genetic and biochemical characterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus.

We have used genetic and biochemical techniques to study carotenoid biosynthesis (crt) mutants of Rhodobacter capsulatus, a purple non-sulfur photosynthetic bacterium. All nine identified crt genes are located within the 46-kilobase pair photosynthesis gene cluster, and eight of the crt genes form a subcluster. We have studied the operon structure of the crt gene cluster using transposon Tn5.7 ...

متن کامل

Generation of transgenic maize with enhanced provitamin A content

Vitamin A deficiency (VAD) affects over 250 million people worldwide and is one of the most prevalent nutritional deficiencies in developing countries, resulting in significant socio-economic losses. Provitamin A carotenoids such as beta-carotene, are derived from plant foods and are a major source of vitamin A for the majority of the world's population. Several years of intense research has re...

متن کامل

RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus.

We provide in vivo genetic and in vitro biochemical evidence that RegA directly regulates bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus. beta-Galactosidase expression assays with a RegA-disrupted strain containing reporter plasmids for Mg-protoporphyrin IX monomethyl ester oxidative cyclase (bchE), Mg-protoporphyrin IX chelatase (bchD), and phytoene dehydrogenase (cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014